Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2797: 253-260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570465

RESUMO

Bioluminescence resonance energy transfer (BRET) is a valuable technique for studying protein-protein interactions (PPIs) within live cells (Pfleger and Eidne, Nat Methods 3:165-174, 2006). Among the various BRET methodologies, a recent addition called NanoBRET has emerged, leveraging advancements in donor and acceptor technologies (Machleidt and Woodroofe, ACS Chem Biol 10:1797-1804, 2015). In this study, we present a developed methodology designed to measure PPIs involving the RAS protein family and their effectors and interactors at the plasma membrane. By utilizing the NanoLuc and HaloTag BRET pair, we provide evidence of a saturable interaction between KRAS4b-G12D and full-length RAF1. Conversely, the RAF1 R89L mutant, known to impede RAF1 binding to active RAS, exhibits nonspecific interactions. The assay exhibits remarkable signal-to-background ratios and is highly suitable for investigating the interactions of RAS with effectors, as well as for high-throughput screening assays.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Ensaios de Triagem em Larga Escala , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Transferência de Energia , Medições Luminescentes/métodos
3.
Commun Biol ; 7(1): 242, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418613

RESUMO

The oncogene RAS, extensively studied for decades, presents persistent gaps in understanding, hindering the development of effective therapeutic strategies due to a lack of precise details on how RAS initiates MAPK signaling with RAF effector proteins at the plasma membrane. Recent advances in X-ray crystallography, cryo-EM, and super-resolution fluorescence microscopy offer structural and spatial insights, yet the molecular mechanisms involving protein-protein and protein-lipid interactions in RAS-mediated signaling require further characterization. This study utilizes single-molecule experimental techniques, nuclear magnetic resonance spectroscopy, and the computational Machine-Learned Modeling Infrastructure (MuMMI) to examine KRAS4b and RAF1 on a biologically relevant lipid bilayer. MuMMI captures long-timescale events while preserving detailed atomic descriptions, providing testable models for experimental validation. Both in vitro and computational studies reveal that RBDCRD binding alters KRAS lateral diffusion on the lipid bilayer, increasing cluster size and decreasing diffusion. RAS and membrane binding cause hydrophobic residues in the CRD region to penetrate the bilayer, stabilizing complexes through ß-strand elongation. These cooperative interactions among lipids, KRAS4b, and RAF1 are proposed as essential for forming nanoclusters, potentially a critical step in MAP kinase signal activation.


Assuntos
Bicamadas Lipídicas , Lipídeos de Membrana , Lipídeos de Membrana/metabolismo , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo , Transdução de Sinais
4.
Sci Adv ; 10(7): eadj4137, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354232

RESUMO

KRAS, the most frequently mutated oncogene in human cancer, produces two isoforms, KRAS4a and KRAS4b, through alternative splicing. These isoforms differ in exon 4, which encodes the final 15 residues of the G-domain and hypervariable regions (HVRs), vital for trafficking and membrane localization. While KRAS4b has been extensively studied, KRAS4a has been largely overlooked. Our multidisciplinary study compared the structural and functional characteristics of KRAS4a and KRAS4b, revealing distinct structural properties and thermal stability. Position 151 influences KRAS4a's thermal stability, while position 153 affects binding to RAF1 CRD protein. Nuclear magnetic resonance analysis identified localized structural differences near sequence variations and provided a solution-state conformational ensemble. Notably, KRAS4a exhibits substantial transcript abundance in bile ducts, liver, and stomach, with transcript levels approaching KRAS4b in the colon and rectum. Functional disparities were observed in full-length KRAS variants, highlighting the impact of HVR variations on interaction with trafficking proteins and downstream effectors like RAF and PI3K within cells.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Conformação Molecular , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
5.
ACS Chem Biol ; 18(9): 2082-2093, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579045

RESUMO

Protein-membrane interactions (PMIs) are ubiquitous in cellular signaling. Initial steps of signal transduction cascades often rely on transient and dynamic interactions with the inner plasma membrane leaflet to populate and regulate signaling hotspots. Methods to target and modulate these interactions could yield attractive tool compounds and drug candidates. Here, we demonstrate that the conjugation of a medium-chain lipid tail to the covalent K-Ras(G12C) binder MRTX849 at a solvent-exposed site enables such direct modulation of PMIs. The conjugated lipid tail interacts with the tethered membrane and changes the relative membrane orientation and conformation of K-Ras(G12C), as shown by molecular dynamics (MD) simulation-supported NMR studies. In cells, this PMI modulation restricts the lateral mobility of K-Ras(G12C) and disrupts nanoclusters. The described strategy could be broadly applicable to selectively modulate transient PMIs.


Assuntos
Transdução de Sinais , Proteínas ras , Proteínas ras/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Lipídeos , Proteínas Proto-Oncogênicas p21(ras)/genética
6.
Sci Adv ; 9(28): eadf4766, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450595

RESUMO

RIT1 is a RAS guanosine triphosphatase (GTPase) that regulates different aspects of signal transduction and is mutated in lung cancer, leukemia, and in the germline of individuals with Noonan syndrome. Pathogenic RIT1 proteins promote mitogen-activated protein kinase (MAPK) hyperactivation; however, this mechanism remains poorly understood. Here, we show that RAF kinases are direct effectors of membrane-bound mutant RIT1 necessary for MAPK activation. We identify critical residues in RIT1 that facilitate interaction with membrane lipids and show that these are necessary for association with RAF kinases and MAPK activation. Although mutant RIT1 binds to RAF kinases directly, it fails to activate MAPK signaling in the absence of classical RAS proteins. Consistent with aberrant RAF/MAPK activation as a driver of disease, we show that pathway inhibition alleviates cardiac hypertrophy in a mouse model of RIT1 mutant Noonan syndrome. These data shed light on the function of pathogenic RIT1 and identify avenues for therapeutic intervention.


Assuntos
Neoplasias Pulmonares , Síndrome de Noonan , Animais , Camundongos , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Síndrome de Noonan/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Cardiomegalia/genética , Transdução de Sinais
7.
J Chem Theory Comput ; 19(9): 2658-2675, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37075065

RESUMO

Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF. To capture the driving forces that bring RAS and RAF (represented as two domains, RBD and CRD) together on the plasma membrane, simulations with the ability to calculate atomic detail while having long time and large length- scales are needed. The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) is able to resolve RAS/RAF protein-membrane interactions that identify specific lipid-protein fingerprints that enhance protein orientations viable for effector binding. MuMMI is a fully automated, ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate milliseconds of time for a 1 µm2 membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein-lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins. MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to address complex science questions.


Assuntos
Proteínas de Membrana , Simulação de Dinâmica Molecular , Proteínas de Membrana/química , Membrana Celular/metabolismo , Aprendizado de Máquina , Lipídeos
8.
Cell Syst ; 13(9): 724-736.e9, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36057257

RESUMO

Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our uncustomized, virtual, profile-based screening approach instead identifies compounds that match to pathways based on the phenotypic information in public cell image data, created using the Cell Painting assay. Our straightforward correlation-based computational strategy retrospectively uncovered the expected, known small-molecule regulators for 32% of positive-control gene queries. In prospective, discovery mode, we efficiently identified new compounds related to three query genes and validated them in subsequent gene-relevant assays, including compounds that phenocopy or pheno-oppose YAP1 overexpression and kill a Yap1-dependent sarcoma cell line. This image-profile-based approach could replace many customized labor- and resource-intensive screens and accelerate the discovery of biologically and therapeutically useful compounds.


Assuntos
Estudos Prospectivos , Linhagem Celular , Estudos Retrospectivos
9.
Biophys J ; 121(19): 3630-3650, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35778842

RESUMO

During the activation of mitogen-activated protein kinase (MAPK) signaling, the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF bind to active RAS at the plasma membrane. The orientation of RAS at the membrane may be critical for formation of the RAS-RBDCRD complex and subsequent signaling. To explore how RAS membrane orientation relates to the protein dynamics within the RAS-RBDCRD complex, we perform multiscale coarse-grained and all-atom molecular dynamics (MD) simulations of KRAS4b bound to the RBD and CRD domains of RAF-1, both in solution and anchored to a model plasma membrane. Solution MD simulations describe dynamic KRAS4b-CRD conformations, suggesting that the CRD has sufficient flexibility in this environment to substantially change its binding interface with KRAS4b. In contrast, when the ternary complex is anchored to the membrane, the mobility of the CRD relative to KRAS4b is restricted, resulting in fewer distinct KRAS4b-CRD conformations. These simulations implicate membrane orientations of the ternary complex that are consistent with NMR measurements. While a crystal structure-like conformation is observed in both solution and membrane simulations, a particular intermolecular rearrangement of the ternary complex is observed only when it is anchored to the membrane. This configuration emerges when the CRD hydrophobic loops are inserted into the membrane and helices α3-5 of KRAS4b are solvent exposed. This membrane-specific configuration is stabilized by KRAS4b-CRD contacts that are not observed in the crystal structure. These results suggest modulatory interplay between the CRD and plasma membrane that correlate with RAS/RAF complex structure and dynamics, and potentially influence subsequent steps in the activation of MAPK signaling.


Assuntos
Cisteína , Proteínas Proto-Oncogênicas c-raf , Sítios de Ligação , Membrana Celular/metabolismo , Cisteína/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Solventes/metabolismo
10.
J Chem Theory Comput ; 18(8): 5025-5045, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35866871

RESUMO

The appeal of multiscale modeling approaches is predicated on the promise of combinatorial synergy. However, this promise can only be realized when distinct scales are combined with reciprocal consistency. Here, we consider multiscale molecular dynamics (MD) simulations that combine the accuracy and macromolecular flexibility accessible to fixed-charge all-atom (AA) representations with the sampling speed accessible to reductive, coarse-grained (CG) representations. AA-to-CG conversions are relatively straightforward because deterministic routines with unique outcomes are achievable. Conversely, CG-to-AA conversions have many solutions due to a surge in the number of degrees of freedom. While automated tools for biomolecular CG-to-AA transformation exist, we find that one popular option, called Backward, is prone to stochastic failure and the AA models that it does generate frequently have compromised protein structure and incorrect stereochemistry. Although these shortcomings can likely be circumvented by human intervention in isolated instances, automated multiscale coupling requires reliable and robust scale conversion. Here, we detail an extension to Multiscale Machine-learned Modeling Infrastructure (MuMMI), including an improved CG-to-AA conversion tool called sinceCG. This tool is reliable (∼98% weakly correlated repeat success rate), automatable (no unrecoverable hangs), and yields AA models that generally preserve protein secondary structure and maintain correct stereochemistry. We describe how the MuMMI framework identifies CG system configurations of interest, converts them to AA representations, and simulates them at the AA scale while on-the-fly analyses provide feedback to update CG parameters. Application to systems containing the peripheral membrane protein RAS and proximal components of RAF kinase on complex eight-component lipid bilayers with ∼1.5 million atoms is discussed in the context of MuMMI.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Humanos , Bicamadas Lipídicas/química , Estrutura Secundária de Proteína , Proteínas/química
11.
iScience ; 25(1): 103608, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35106460

RESUMO

Understanding the spatiotemporal distribution and dynamics of RAS on the plasma membrane (PM) is the key for elucidating the molecular mechanisms of the RAS signaling pathway. Single particle tracking (SPT) experiments show that in cells, KRAS diffuses in at least three interchanging states on the cellular PM; however, KRAS remains monomeric and always shows homogeneous diffusion on artificial membranes. Here, we show for the first time on a supported lipid bilayer composed of heterogeneous lipid components that we can recapitulate the three-state diffusion of KRAS seen in cells. The use of a biologically relevant eight-lipid system opens a new frontier in the biophysical studies of RAS and other membrane associated proteins on a biomimetic system that recapitulates the complexity of a cellular PM.

12.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983849

RESUMO

RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.


Assuntos
Membrana Celular/enzimologia , Lipídeos/química , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Multimerização Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Transdução de Sinais , Humanos
13.
Biomolecules ; 11(3)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802474

RESUMO

RAS proteins are mutated in approximately 20% of all cancers and are generally associated with poor clinical outcomes. RAS proteins are localized to the plasma membrane and function as molecular switches, turned on by partners that receive extracellular mitogenic signals. In the on-state, they activate intracellular signal transduction cascades. Membrane-bound RAS molecules segregate into multimers, known as nanoclusters. These nanoclusters, held together through weak protein-protein and protein-lipid associations, are highly dynamic and respond to cellular input signals and fluctuations in the local lipid environment. Disruption of RAS nanoclusters results in downregulation of RAS-mediated mitogenic signaling. In this review, we discuss the propensity of RAS proteins to display clustering behavior and the interfaces that are associated with these assemblies. Strategies to therapeutically disrupt nanocluster formation or the stabilization of signaling incompetent RAS complexes are discussed.


Assuntos
Nanopartículas/uso terapêutico , Transdução de Sinais , Proteínas ras/metabolismo , Animais , Membrana Celular/metabolismo , Humanos , Multimerização Proteica
14.
J Biol Chem ; 295(28): 9335-9348, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32393580

RESUMO

The oncogene RAS is one of the most widely studied proteins in cancer biology, and mutant active RAS is a driver in many types of solid tumors and hematological malignancies. Yet the biological effects of different RAS mutations and the tissue-specific clinical implications are complex and nuanced. Here, we identified an internal tandem duplication (ITD) in the switch II domain of NRAS from a patient with extremely aggressive colorectal carcinoma. Results of whole-exome DNA sequencing of primary and metastatic tumors indicated that this mutation was present in all analyzed metastases and excluded the presence of any other clear oncogenic driver mutations. Biochemical analysis revealed increased interaction of the RAS ITD with Raf proto-oncogene Ser/Thr kinase (RAF), leading to increased phosphorylation of downstream MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK). The ITD prevented interaction with neurofibromin 1 (NF1)-GTPase-activating protein (GAP), providing a mechanism for sustained activity of the RAS ITD protein. We present the first crystal structures of NRAS and KRAS ITD at 1.65-1.75 Å resolution, respectively, providing insight into the physical interactions of this class of RAS variants with its regulatory and effector proteins. Our in-depth bedside-to-bench analysis uncovers the molecular mechanism underlying a case of highly aggressive colorectal cancer and illustrates the importance of robust biochemical and biophysical approaches in the implementation of individualized medicine.


Assuntos
Neoplasias Colorretais , GTP Fosfo-Hidrolases , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana , Mutação , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Cristalografia por Raios X , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Domínios Proteicos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sequenciamento do Exoma , Quinases raf/genética , Quinases raf/metabolismo
15.
Elife ; 92020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31958057

RESUMO

The RAS proteins are GTP-dependent switches that regulate signaling pathways and are frequently mutated in cancer. RAS proteins concentrate in the plasma membrane via lipid-tethers and hypervariable region side-chain interactions in distinct nano-domains. However, little is known about RAS membrane dynamics and the details of RAS activation of downstream signaling. Here, we characterize RAS in live human and mouse cells using single-molecule-tracking methods and estimate RAS mobility parameters. KRAS4b exhibits confined mobility with three diffusive states distinct from the other RAS isoforms (KRAS4a, NRAS, and HRAS); and although most of the amino acid differences between RAS isoforms lie within the hypervariable region, the additional confinement of KRAS4b is largely determined by the protein's globular domain. To understand the altered mobility of an oncogenic KRAS4b, we used complementary experimental and molecular dynamics simulation approaches to reveal a detailed mechanism.


Assuntos
Membrana Celular , Proteínas Proto-Oncogênicas p21(ras) , Animais , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Células HeLa , Humanos , Camundongos , Simulação de Dinâmica Molecular , Domínios Proteicos , Isoformas de Proteínas , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
16.
Cancers (Basel) ; 11(7)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247990

RESUMO

Mutated forms of the RAS oncogene drive 30% of all cancers, but they cannot be targeted therapeutically using currently available drugs. The molecular and cellular mechanisms that create a heterogenous tumor environment harboring both mutant and wild-type RAS have not been elucidated. In this study, we examined horizontal transfer of mutant KRAS (Kirsten Rat Sarcoma Virus) between colorectal cancer (CRC) cells via a direct form of cell-to-cell communication called tunneling nanotubes (TNTs). TNT formation was significantly higher in CRC cell lines expressing mutant KRAS than CRC cell lines expressing wild-type RAS; this effect was most pronounced in metastatic CRC cell lines with both mutant KRAS and deficiency in mismatch repair proteins. Using inverted and confocal fluorescence time-lapse and fluorescence recovery after photobleaching (FRAP)-based microscopy, we observed GFP-tagged mutant KRASG12D protein trafficking between CRC cells through TNTs within a span of seconds to several minutes. Notably, acquisition of mutant KRAS increased Extracellular Signal-regulated Kinase (ERK) phosphorylation and upregulated tunneling nanotube formation in recipient wildtype CRC cells. In conclusion, these findings suggest that intercellular horizontal transfer of RAS can occur by TNTs. We propose that intercellular transfer of mutant RAS can potentially induce intratumoral heterogeneity and result in a more invasive phenotype in recipient cells.

17.
Semin Cancer Biol ; 54: 174-182, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29432816

RESUMO

Development of therapeutic strategies against RAS-driven cancers has been challenging due in part to a lack of understanding of the biology of the system and the ability to design appropriate assays and reagents for targeted drug discovery efforts. Recent developments in the field have opened up new avenues for exploration both through advances in the number and quality of reagents as well as the introduction of novel biochemical and cell-based assay technologies which can be used for high-throughput screening of compound libraries. The reagents and assays developed at the NCI RAS Initiative offer a suite of new weapons that could potentially be used to enable the next generation of RAS drug discovery efforts with the hope of finding novel therapeutics for a target once deemed undruggable.


Assuntos
Descoberta de Drogas , Proteínas ras/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Descoberta de Drogas/métodos , Descoberta de Drogas/normas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Seleção de Medicamentos Antitumorais/normas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Controle de Qualidade , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/genética , Proteínas ras/metabolismo
18.
J Biol Chem ; 291(19): 10058-66, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-26961871

RESUMO

High-throughput screening of extracts from plants, marine, and micro-organisms led to the identification of the extract from the plant Phyllanthus engleri as the most potent inhibitor of EWS-FLI1 induced luciferase reporter expression. Testing of compounds isolated from this extract in turn led to the identification of Englerin A (EA) as the active constituent of the extract. EA induced both necrosis and apoptosis in Ewing cells subsequent to a G2M accumulation of cells in the cell cycle. It also impacted clonogenic survival and anchorage-independent proliferation while also decreasing the proportion of chemotherapy-resistant cells identified by high ALDH activity. EA also caused a sustained increase in cytosolic calcium levels. EA appears to exert its effect on Ewing cells through a decrease in phosphorylation of EWS-FLI1 and its ability to bind DNA. This effect is mediated, at least in part, through a decrease in the levels of the calcium-dependent protein kinase PKC-ßI after a transient up-regulation.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , DNA de Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/metabolismo , Sesquiterpenos de Guaiano/farmacologia , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Apoptose/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Humanos , Proteínas de Fusão Oncogênica/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Ligação Proteica/efeitos dos fármacos , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
19.
Per Med ; 12(3): 183-186, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29771643
20.
Cytometry A ; 85(6): 512-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24515854

RESUMO

Actin fibers (F-actin) control the shape and internal organization of cells, and generate force. It has been long appreciated that these functions are tightly coupled, and in some cases drive cell behavior and cell fate. The distribution and dynamics of F-actin is different in cancer versus normal cells and in response to small molecules, including actin-targeting natural products and anticancer drugs. Therefore, quantifying actin structural changes from high resolution fluorescence micrographs is necessary for further understanding actin cytoskeleton dynamics and phenotypic consequences of drug interactions on cells. We applied an artificial neural network algorithm, which used image intensity and anisotropy measurements, to quantitatively classify F-actin subcellular features into actin along the edges of cells, actin at the protrusions of cells, internal fibers and punctate signals. The algorithm measured significant increase in F-actin at cell edges with concomitant decrease in internal punctate actin in astrocytoma cells lacking functional neurofibromin and p53 when treated with three structurally-distinct anticancer small molecules: OSW1, Schweinfurthin A (SA) and a synthetic marine compound 23'-dehydroxycephalostatin 1. Distinctly different changes were measured in cells treated with the actin inhibitor cytochalasin B. These measurements support published reports that SA acts on F-actin in NF1(-/-) neurofibromin deficient cancer cells through changes in Rho signaling. Quantitative pattern analysis of cells has wide applications for understanding mechanisms of small molecules, because many anti-cancer drugs directly or indirectly target cytoskeletal proteins. Furthermore, quantitative information about the actin cytoskeleton may make it possible to further understand cell fate decisions using mathematically testable models.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Astrocitoma/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/ultraestrutura , Astrocitoma/patologia , Linhagem Celular Tumoral , Estruturas Celulares/ultraestrutura , Humanos , Redes Neurais de Computação , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...